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Before to start..

►Tools:

○Eclipse IDE 3.6

●eclipse.org
○ IBM Rational Software Architect

●Ibm.com/downloads
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Example

►Sample Program to print out a statement 
of customer's charges at a video store.

►Let's see the UML Class Diagram...

►… and read the Source Code

○Program Comprehension!
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Starting Point

► Impressions about the design of the Program
○ statement() ?

●Long Statement

○ [Requirement] 
Define htmlStatement()

► Solutions ?
○ Copy & Paste

► What happens when Charging Rules Change?
○ Change both methods
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What to do?

► Common feeling:
Don't touch method statement

► Old engineering adage:
“If it ain't broke, don't fix it”

► It's not broken but is does hurt!

► Refactoring
○ You have to add a feature and Program's code is not 

structured in a convenient way!
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Step 1: Extracting Amount 
Calculation

► First step: Aided...

► Obvious target: long method statement()

► What refactoring solution do you suggest?

► Refactorings:
○ Extract Method

○ Change Method Signature

○ Rename Variables
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Step 2: Amount calculation

► Let's look at the refactored code

► amountOf() method

► What's wrong in your opinion?

► Refactoring:
○Move Method
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Step 3: Refinements

► Let's go back to Customer.statement()

► Next thing that strikes me is:
○thisAmount

► Refactoring:
○Best Practice: Replace a temp with a query
○ Inline Refactoring
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Step 4: Extracting Renter Points

► Next step: Do similar thing for frequent renter 
point

► Again, What refactoring do you suggest?

► Refactoring:
○ Extract Method
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Step 4.1: Refinement

► Let's look at the refactored code

► frequentRenterPoints() method

► Any ideas?

► Refactoring:
○Best Practice: Replace Temp with Query 
○Move Method
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Step 4.2: Another Refinement

► We can take all the refactored code and 
replace all temporary variables with queries

► Local Variables become Method Calls

► Let's see how...
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Step 4.2: Observations

► More refactoring reduce the amount of code 
but this one increases it!

► That's because Java requires a lot of 
statements to set up a summing loop.
○ Java Idiom
○ Arises the needs of Java Closures
○ http://martinfowler.com/bliki/Closure.html

► Performances?

http://martinfowler.com/bliki/Closure.html
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Step 5: htmlStatement()

► Now we are able to implement the new 
method htmlStatement()

► Let's see the source code...
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Step 6: Rental Calculation

► Change the target:
○ Rental Class

► Focus on:
○ Rental Calculation

► What's wrong?

► Refactoring:
○Move Method
○ Extract Method
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Step 7: Movie Class

► Let's look at Movie Class UML

► Movie has:
○ Three Constants!
○What about constructors?

► Refactoring:
○ Extract Constructors



16
Step 8: At last....

► We have different types of Movies

► So we have different ways of answering the 
same question

► This sounds like a job for... ?
○ Subclasses and Inheritance
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State Pattern

► The State Pattern is a behavioral software 
design pattern.

► This pattern is used in computer programming 
to represent the state of an object. 

► This is a clean way for an object to partially 
change its type at runtime [Gang of Four]
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Final Thoughts

► Hope this simple examples gives you the 
feeling of what refactoring is like.

► Used Techniques:
○Moving Behaviour, Extract Method
○ Replacing case statements

► Improve responsibilities distribution
► Facilitate code maintenance
► Most important lesson: Rhythm of Refactoring

○ Test, small change, test, small change, test, ….
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