
Refactoring by Examples:
Coding Horrors and

Remedies

Course of Software Engineering II

A.A. 2010/2011
Valerio Maggio, PhD Student

Prof. Sergio Di Martino

2
Before to start..

►Tools:

○Eclipse IDE 3.6

●eclipse.org
○ IBM Rational Software Architect

●Ibm.com/downloads

3
Example

►Sample Program to print out a statement
of customer's charges at a video store.

►Let's see the UML Class Diagram...

►… and read the Source Code

○Program Comprehension!

4
Starting Point

► Impressions about the design of the Program
○ statement() ?

●Long Statement

○ [Requirement]
Define htmlStatement()

► Solutions ?
○ Copy & Paste

► What happens when Charging Rules Change?
○ Change both methods

5
What to do?

► Common feeling:
Don't touch method statement

► Old engineering adage:
“If it ain't broke, don't fix it”

► It's not broken but is does hurt!

► Refactoring
○ You have to add a feature and Program's code is not

structured in a convenient way!

6

Step 1: Extracting Amount
Calculation

► First step: Aided...

► Obvious target: long method statement()

► What refactoring solution do you suggest?

► Refactorings:
○ Extract Method

○ Change Method Signature

○ Rename Variables

7
Step 2: Amount calculation

► Let's look at the refactored code

► amountOf() method

► What's wrong in your opinion?

► Refactoring:
○Move Method

8
Step 3: Refinements

► Let's go back to Customer.statement()

► Next thing that strikes me is:
○thisAmount

► Refactoring:
○Best Practice: Replace a temp with a query
○ Inline Refactoring

9
Step 4: Extracting Renter Points

► Next step: Do similar thing for frequent renter
point

► Again, What refactoring do you suggest?

► Refactoring:
○ Extract Method

10
Step 4.1: Refinement

► Let's look at the refactored code

► frequentRenterPoints() method

► Any ideas?

► Refactoring:
○Best Practice: Replace Temp with Query
○Move Method

11
Step 4.2: Another Refinement

► We can take all the refactored code and
replace all temporary variables with queries

► Local Variables become Method Calls

► Let's see how...

12
Step 4.2: Observations

► More refactoring reduce the amount of code
but this one increases it!

► That's because Java requires a lot of
statements to set up a summing loop.
○ Java Idiom
○ Arises the needs of Java Closures
○ http://martinfowler.com/bliki/Closure.html

► Performances?

http://martinfowler.com/bliki/Closure.html

13
Step 5: htmlStatement()

► Now we are able to implement the new
method htmlStatement()

► Let's see the source code...

14
Step 6: Rental Calculation

► Change the target:
○ Rental Class

► Focus on:
○ Rental Calculation

► What's wrong?

► Refactoring:
○Move Method
○ Extract Method

15
Step 7: Movie Class

► Let's look at Movie Class UML

► Movie has:
○ Three Constants!
○What about constructors?

► Refactoring:
○ Extract Constructors

16
Step 8: At last....

► We have different types of Movies

► So we have different ways of answering the
same question

► This sounds like a job for... ?
○ Subclasses and Inheritance

17
State Pattern

► The State Pattern is a behavioral software
design pattern.

► This pattern is used in computer programming
to represent the state of an object.

► This is a clean way for an object to partially
change its type at runtime [Gang of Four]

18
Final Thoughts

► Hope this simple examples gives you the
feeling of what refactoring is like.

► Used Techniques:
○Moving Behaviour, Extract Method
○ Replacing case statements

► Improve responsibilities distribution
► Facilitate code maintenance
► Most important lesson: Rhythm of Refactoring

○ Test, small change, test, small change, test, ….

19
References

► [Fowler]
○ Fowler M with Scott K, UML Distilled: Applying the

Standard Object Modeling Language, Addison-
Wesley, Reading MA, 1997

► [Gang of Four]
○Gamma E, Helm R, Johnson R, and Vlissides J,

Design Patterns: Elements of Reusable Object
Oriented Software, Addison-Wesley, Reading MA,
1995

► www.cs.toronto.edu/~arnold/407/06s/assignm
ents/02/fowler04refactoring.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

